CS 61A Exam Prep Session 1

SQL and Exam-prep strategy review

Jacob Wu // 11.28.2021 // Intended for Zody

SELECT
DISTINCT
FROM
UNION
WHERE

IN

ORDER BY

SQL

Basics

SQL

Example Structure

« SELECT [columns] FROM [table] WHERE [condition] ORDER BY [order]

- WITH ages AS (SELECT age FROM Penguin WHERE age > 10 ORDER BY
name)

« SELECT * FROM Penguin WHERE age IN ages;

SQL

Exam Questions

6. (8 points) Six Degrees of Separation

7

You’ve probably heard that we are all within “six degrees of separation.” That is, either we are friends (one
degree), friends of friends (two degrees), friends of friends of friends (three degrees), etc. up to six degrees.
We may, of course, be separated by several different distances, as when our friend is also a friend of a friend.
Although there are obviously many different paths leading from you back to yourself, however, we won’t consider
you as being connected with yourself.

Suppose that friends is an SQL table with two columns, F1 and F2, where in each row, F1 and F2 are the
names of two friends—i.e., two people with one degree of separation between them. To make life easier, we’ll
assume that if (Peter, Paul) is in the table, then so is (Paul, Peter). We would like an SQL query that produces
a two-column table named linked of people separated (by some chain of friends) by N or fewer degrees of
separation, where N is some integer. In your solution, use ‘N’ as if it is an integer literal, like 6. (The idea of
using ‘N’ instead of a specific number is to force your solution to be general.) Each pair in the resulting table
should appear exactly once, with the name in the first column being first in alphabetical order.

For example, suppose that NV = 2, then given the friends table on the left, we should get the 1linked table
on the right, in some order. (The column names don’t matter for 1inked, and so are not shown.)

friends
linked
F1 F2 .
Cindy | Rose
Peter Paul .

Cindy | Jack

Jack Paul
Jack Paul

Rose Jack
Jack Rose

Paul Sam
: Jack Peter

Cindy | Rose
Jack Sam

Paul Peter
Paul Peter

Paul Jack
Paul Sam

Jack Rose
Paul Rose
Sam Paul Peter Sam

Rose | Cindy

SQL

Exam Questions

create table linked as

with sep(S1, S2, degrees) as (

select __ __ _ ____ __ ___ __ ... union
select _ __ _ _ _ _ _ _ _ _ oo from friends, sep
where

select from where :

SQL

Exam Questions

create table linked as

with sep(S1, S2, degrees) as (

(=
select _ _ _ _ _ _ _ _ _ union
select _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ from friends, sep

where

SQL

Exam Questions

create table linked as

with sep(S1, S2, degrees) as (
Qe

rece F\, F2,| Hrom Aviends

select F() SZ[dQS(QQS +' from friends, sep

where S‘ < SZ

O Start with uhot we have

SQL

Exam Questions

create table linked as

with sep(S1, S2, degrees) as (
Qe

rece F\, F2,| Hrom Aviends

select F() SZ[dQS(QQS +' from friends, sep

where S‘ < SZ

O Start with uhot we have

Exam Prep

Linked List
Voriak\eS Diagram

Linked List

« while current.rest is not Link.empty:
« |ast.rest = Link(current.first + current.rest.first)
 |ast, current = last.rest, current.rest

 |ast.rest = Link(1)

Tree

Diagram

Tree

 def print_column(tree, col):
 def print_inner(t, k):
. if tis BinTree.empty: return
e if k ==-col: print(t.label)
. else:
 print_inner(t.left, k-1)
 print_inner(t.right, k+1)

 print_inner(tree, O)

Iterator & Generator

Diagram

. |terable (objects) can be used in a for loop, e.g. range(4), [1,2,3], {a’: 1}

« Generators simplify the creation of an iterator, e.g. functions with yield

class yrange:
def init_ (self, n):
self.1 =20

self.n =n def yrange(n):

i=20

while i < n:
yield i
1 +=1

def iter_ (self):
return self

def _ next (self):
if self.i < self.n:
i1 = self.1
self.1 += 1
return 1
else:
raise StopIteration()

Iterator & Generator

« def amplify(f, x):
« while x:

. vield x
e X =Tf(x)

Lambda

Review

« Lambda as small, anonymous function
« Xx=|lambdaa:a+10
« x=|lambdaa,b:a*b

« x=|lambdaa,b,c:a+b+c

 def multigroup(f, s):
 def using(g, s):
e iflen(s)==1: return s[O]
. else:
« grouped = group(g, S)
 return using(lambda x: f(g(x[O])), grouped)

 return using(lambda x: x, s)

